
CS 390
Chapter 12 Homework Solutions

12.1 Consider a file currently consisting ...

contiguous linked indexed
a. 100 reads, 101 writes 1 write 2 writes
b. (100 - m) reads, (101 - m) writes (100 - m) reads, 2 writes 2 writes
c. 1 write 100 reads, 2 writes 2 writes
d. no operations no operations 1 write
e. (99 - m) reads, (99 - m) writes (99 - m) reads, 2 writes 1 write
f. no operations 99 reads, 1 write 1 write

12.3 Why must the bit map ...

The bit map may be many MB in size. For example, a 1TB disk with
512 byte blocks will have 231 blocks. At 8 bits / byte it will require a
256MB bit map. This bit map will be accessed relatively infrequently,
and only a single bit will be accessed at once. It is a wasteful to keep
the entire bitmap in memory.

The bitmap must maintain its contents between reboots, so it must
be stored on secondary storage. The logical place to store the bitmap
is on the disk that is being mapped.

While parts of the bitmap must be placed in memory to be
manipulated by the kernel, we don’t want to keep it there for long. A
crash could corrupt the bitmap if it is not current on disk, corrupting
the file system free-block list.

12.9 Consider a file system that ...

a. All extents are of the same size, and the size is

predetermined.

Advantages: No external fragmentation, since we can always
reuse the space occupied by a deleted extent. With this scheme,
the number of extents is a function of the number of blocks in
the file, rather than a product of the current fragmentation state
of the disk.

Disadvantages: Internal fragmentation, which will be severe if
extents are large. If extents are the same size as a disk block,
this system degenerates into an indexed scheme.



b. Extents can be of any size and are allocated

dynamically.

Advantages: Little internal fragmentation, as only the last
extent of a file will contain a block that is not completely filled.
Some files (specifically, the first ones created on the disk) will be
stored contiguously, so access to them will be fast.

Disadvantages: After some time, the free space on the disk will
become fragmented. In the worst case, each free block will be in
its own extent, and reading a file will require a seek for each
block, making access slow.

c. Extents can be of a few fixed sizes, and these sizes

are predetermined.

This is similar to the “buddy system” of dynamic memory
allocation. (See section 9.8.1.)

Advantages: As long as files rarely exceed the size of the largest
extent, this allocation scheme is fast because the file system will
attempt to place files into a single extent that is just large
enough to hold it.

Disadvantages: Internal fragmentation will occur, since files will
rarely fit exactly into an extent. Since the number and sizes of
extents are fixed, the system may eventually run short of smaller
extents, resulting in lots of internal fragmentation when large
extents are used for small files. On the other hand, the system
could run short of large extents, reducing internal fragmentation,
but causing files to be scattered across the disk.

12.12 Consider a system where free space is kept in a free

space list.

Let’s assume in this question that the free-space list is a bitmap of
free and used blocks stored in the disk. The pointer to this list would
be kept in the volume control block.

a. Suppose that the pointer to the free-space list is

lost. Can the system reconstruct the free-space list?

Explain your answer.

Yes, but the amount of time required will grow linearly with the
number of files in the file system. To reconstruct the free-space



list, the OS must scan the file system beginning at the root. As
each directory and file is scanned, the OS marks the associated
disk blocks as used. (Notice that this includes not only file data,
but any file-control blocks and index blocks associated with the
file, as well as blocks (both data and meta-data) used by
directories. In addition, blocks occupied by volume- and
boot-control blocks must be accounted for.)

One problem with this scheme is that some OS’s deal with
damaged (unreadable and/or unwritable) disk blocks simply by
removing them from the free list. The scanning technique
described above would identify these blocks as free, since they
are not part of the file system structure. The danger here is that
these blocks might be allocated to a file, even though we know
they are bad. Thus, the OS would need to keep a separate list of
these blocks on disk. Early versions of Unix solved this problem
by allocating these bad blocks to a special file whose only
purpose was to be composed of bad blocks, and placing this file
in a special directory. This directory (“/lost+found”) still exists
on some systems.

b. Consider a file system similar to the one used by Unix

with ...

Remember that in Unix, directories are just regular files that
contain a list of file/directory names and pointers to FCB’s
(inodes). In the best case, reading each directory or file requires
three disk block accesses: one to read the inode for the file or
directory, one to read the index block pointed to by the inode,
and then one to read the first data block of file or directory itself.

If we assume we know the address of the root inode when we
begin, then 12 reads are required:

1. read the root inode,

2. read the index block of the root directory,

3. read the root directory,

4. read a’s inode,

5. read a’s index block,

6. read directory a,

7. read b’s inode,



8. read b’s index block,

9. read directory b,

10. read c’s inode,

11. read c’s index block,

12. read first block of file c.

If we assume a double-indirect block scheme, than in the worse
case, four reads are required to get the appropriate block of a
directory or file into memory: read the inode, read the double
indirect block, read the indirect block, read the data block. This
gives us a total of 16 reads.

c. Suggest a scheme to ensure that the pointer is never

lost as a result of memory failure.

Store the pointer to the free space list in several different
locations on disk.

12.14 Discuss how performance optimizations for file systems

might result in difficulties in maintaining the

consistency of the systems in the event of computer

crashes.

When parts of the file system are cached, blocks that are in the cache
but which have not yet written to disk would be lost in a crash.
Imagine that a new file is created consisting of one block. If the
file-control block is written to disk, but the data block is not, the
file-control block will point to a disk block of garbage after a crash.

Suppose that free space is managed using a bitmap. The system
could allocate a new block to a file, write the file to disk, update the
bitmap in memory, but then crash before the bitmap can be written
to the disk. This scenario requires some type of consistency checker
(e.g. “fsck” in Unix and “chkdsk” in NT.)

12.17 Fragmentation on a storage device ...

To compact disk blocks, we need to read each file and its associated
FCB into memory, free up the blocks that the file occupies on disk,
locate a contiguous section of free blocks large enough to hold the file
data, rewrite the data blocks, and then update the FCB.



1. It is time consuming, since each change requires two block
accesses - a read of the original block followed by a write to its
new location. Suppose transferring a 1K block requires 0.1
microseconds. (That is, the disk has a transfer rate of 10 MB /
sec.) Then processing a disk with a 100GB file system would
require 2 · 10·230

210
· 1µsec ≈ 36 minutes. This assumes that the

compaction algorithm would only have to move a file once.

2. If a disk is nearly full, we may have to read many files into
memory before we can free up enough contiguous space to
rewrite even one of them. These files may not fit in memory, or
they may have to be read and re-written several times.

3. If a crash occurs while the disk is being compacted, some data
may be lost, since the file system is in an inconsistent state while
a file is being moved. What would happen if the system crashes
while the root directory of the file system or the file that
contains the kernel is being relocated?

11.a Suppose a computer system uses indexed allocation. The

disk has 1KB blocks, and block addresses are 32 bits.

1 If a single direct block is used, what is the maximum

file size that can be supported?

We can fit 210

4
= 256 addresses into the direct block. Thus, the

maximum file size is 256 · 1KB = 256KB.

2 If a double indirect block scheme is used, what is the

maximum file size that can be supported?

The direct block can hold 256 block addresses. The indirect
block can hold 256 direct block addresses, each of which holds
256 block addresses. The maximum file size is
(256 + (256 · 256)) · 1KB = 65792KB ≈ 64MB.

3 Suppose the block size in part 2 is increased to 2KB.

What is the maximum file size that can be supported?

≈ 513MB

4 Suppose we use 1KB blocks with a triple indirect block

scheme. What is the maximum file size?

(256 + 2562 + 2563) ∗ 1KB ≈ 16GB



5 What about a triple indirect block scheme with 8KB

blocks?

(2048 + 20482 + 20483) ∗ 8KB ≈ 64 TB.


