Computer Science 260: Project 1 – Implementing Toodle
Due: Mon. Feb. 25, at the beginning of class
Reminder: All the work that you do for this project must be exclusively your own. You are not allowed to work with or discuss the project with anyone else (whether in the class, outside of the class, or elsewhere in the universe) except the instructor.

In homework 2, you created an object-oriented design for a To-Do list application. In project 1, you will implement your design. You should refer to the functional specification (homework 2) when you have questions about implementation details. Any details that are not given in the functional specification or the class design are the decision of the implementer (who is you).
Begin your implementation using the class design you submitted for homework 2. As you write your implementation, you will probably discover that you made some poor or awkward design decisions. When you do, you are free to make changes to your initial design, but make a note of the changes that you make and the reason you decided to make each change. (See below, under what to turn in.) Do not, however, deviate from the program details listed in the functional specification.
Pay close attention to the following details when writing and submitting your solution:
· You should write and test your solution using the Eclipse IDE on ice. Your submission will be graded on ice, so it must work correctly on that system.
· Call the main class of your program <YourLastNameToodle>.
· All classes except the main class should be placed in a package named edu.truman.<your_last_name>.toodle_bits. Do not place the main class in any package; instead, the main class should import the other classes it needs from your toodle_bits package.
· Make sure the JAR file you create and submit has the correct name, and contains only source files (see below.)
· Pay close attention to writing correct and complete comments:

· Write complete Javadoc every class, including both the public and private methods in those classes.
· Comment all instance variables.
· Comment the body of the main method to explain what task each logical section of code does.
· In addition to Javadoc, include regular comments in the bodies of your methods if they contain complex code.
· Do not add features to the program that are not listed in the functional specification. Remember that if your program differs from the spec., this is considered to be an error. If you wish to extend your program, make a copy and make your extensions to the copy.

What to turn in: You will need to submit four items for this assignment:
1. An electronic copy of your program. Create a JAR for your program. See lab 1 for instructions on creating a JAR in Eclipse. The name of the jar file must be <Yourlastname_Yourfirstname_toodle>.jar. The jar file must contain only the source of your program – do not include any .class files. Once you have created the jar file, upload it to your google drive account. Create a sharable link, and then email the link to me at matthews@truman.edu. In the subject line of the email, put this exactly: <Your Last Name>, <Your First Name> - CS 260 – Project 1.
2. A hardcopy of your source files. Print each class starting on a separate sheet of paper. Staple everything together with the main class on top.
3. A UML class diagram created in DIA that reflects your final design. Make sure your class diagram contains your name, and the project name, and is neat.

4. A short critique (one to three paragraphs) of your original design. Discuss how your final design differs from your original design, and why you decided to make the design changes that you did. This document must be prepared using a word processor.
Assemble the documents in this order for submission: Hard copy, class diagram, and critique, and submit the packet in class on the due date.
How your project will be graded: Your project will be graded using the following criteria:

· The performance of your program on a series of test cases. The grader will issue a series of commands to your program, and then look at the output of your program. In some test cases, the grader will start with a specific task list file, or may look at the contents of the task list file after your program finishes.
· The quality of your code: The use of meaningful variables names, proper use of access specifiers for methods and instance variables, proper comments, proper use of objects.

· The design of your classes: proper use of access specifiers on instance variables and methods.
· The overall structure of your program (proper use of packages), classes represent one idea.
· The quality and accuracy of your critique and UML diagram.
