Computer Science 260: Homework 6 - Anonymous Classes and the Comparator<T> Interface
Write an immutable class called Circle that represents a circle in the two-dimensional Cartesian plane. Do not use java.awt.geom.Eclipse2D in your class. Instead each circle should be represented by two instance variables: A java.awt.geom.Point2D.Double object that represents the center, and a double that represents the radius.
Your class should have the following methods:

public Circle (Point2D.Double center, double radius);

private double area();

private double distance();

public static Comparator<Circle> areaComparatorIncreasing ();
public static Comparator<Circle> distanceComparatorDecreasing ();
public String toString()
Area() returns the area of the circle. Distance() returns the distance between (0,0) and the center of the circle. These two methods should perform lazy calculations of both the area and the distance; that is, they should postpone calculating the object's area and distance until they are called, and they should never calculate the area or distance more than once for each object.
The areaComparatorIncreasing() method should return an object constructed from an anonymous class that implements the Comparator<Circle> interface. Circles with smaller areas come before ones with larger areas in the comparison.
The distanceComparatorDecreasing() method should return an object constructed from another anonymous class that also implements the Comparator<Circle> interface. In this class's compare() method, circles that are farther from the origin come before circles that are closer to the origin.
The toString() method should return a nicely formatted String object that displays the center and radius of the circle. It is for debugging only and not meant to be used in other classes.
Be sure to properly comment your class, including full and complete JavaDoc. Test your class before you submit it by writing a simple main program that prompts the user for some plane coordinates and radii, creates Circle objects, stores the circles in a List<Circle> object, and then sorts the List using the appropriate sort() method from the Collections class.

What to turn in: Turn in a copy of your Circle class. Do not submit your test program.
