CS 260: Project 4 – A Simple Game
Due: Fri. May 10, 11:30 a.m. (the final exam time). You must submit both your JAR and your hard copy before the deadline. No late projects will be accepted.
Write a Java program to implement the simple game demonstrated in class. Here is a picture of the frame as it might appear when the game is running.
[image: image1.png][

[Total Shapes: 16]
Captured Shapes: 4
Percent shapes captured: 25%

Shape Game.

[

Design your program to the following specifications:
· Call the main class <LastnameFirstnameSimpleGame>. The GUI should consist of two parts: a JPanel object (on the left, above) and an object created from a class that extends JComponent(the playing area, on the right above). Place all classes except the main in a properly named package.
· Create the JPanel object and add the JTextFields that display the game statistics to that panel. A JPanel is a container, so you will need to layout the components it contains. To get the layout shown above, set the layout of the JPanel using the BoxLayout:

panel.setLayout (new BoxLayout (panel, BoxLayout.Y_AXIS));
· In the constructor of the JComponent subclass, call the method setPreferredSize(), and pass it a java.awt.Dimension object specifying a size of 1000 by 500. See the API for details. (If you don't specify the dimentions of a component, the frame has no way of discovering them and will assume that the JComponent object has a width and height of zero.)
· You will need two Timer objects for your program. The first will control the animation, and it should move each shape 24 times per second. The second will create a random shape (either a square or circle) and add it to the game area once per second.
· Each shape that appears in the playing field should be created from a subclass of the DraggableMovingShape class, which is shown on the next page. When implementing the contains() method for each shape, return true if and only if the mouse pointer is actually pointing to the interior of the rectangle or circle.
What to turn in: You will need to submit two items for this assignment.

1. An electronic copy of your program. Create a jar file for your program. The name of your jar file must be <YourLastName_YourFirstName_Simple_Game>.jar. The jar file must contain only the source of your program. Do not include any class files. Place a copy of the jar file in your Google drive, and then email the link to me at matthews@truman .edu. In the subject line of youir email, put this exactly: <Your last name>, <Your first name> - CS 260 – Project 4.
2. A hardcopy of your source files. Print each class starting on a separate sheet of paper, and make sure the main class is on top.

This code is available on the course web page.

import java.awt.Graphics2D;

import java.awt.Point;

import java.util.Random;

public abstract class DraggableMovingShape {

/* The current coordinates of the shape. */

protected int currentX, currentY;

/* The amount the shape moves on each clock tick. */

protected int xAutoMove, yAutoMove;

/* The length and width of the shape's bounding box. */

protected int size;

/*

 * This variable tells you the variation in the movement of the shapes on

 * each clock tick. Larger numbers == faster movement.

 */

private static final int MOVEMENT_VARIATION = 5;

/* Range of the size of the shape's bounding box. */

private static final int MIN_SIZE = 10;

private static final int MAX_SIZE = 50;

/* The random number generator for all shapes. */

public static final Random r = new Random();

/**

 * Construct a new DraggableShape, place it in a random location in the

 * component, and calculate a random velocity for it to move when it is

 * animated.

 *

 * @param max_initial_x_pos

 * the maximum initial x position of the object

 * @param max_initial_y_pos

 * the maximum initial y position of the object

 */

public DraggableMovingShape(int max_initial_x_pos, int max_initial_y_pos) {

/*

 * Calculate the initial position as a random coordinate based on

 * the values passed to the constructor.

 */

currentX = r.nextInt(max_initial_x_pos);

currentY = r.nextInt(max_initial_y_pos);

/*

 * Calculate the random movement. The variation gives the width of

 * the range: (-MOVEMENT_VARIATION .. MOVEMENT_VARIATION).

 */

xAutoMove = r.nextInt(2 * MOVEMENT_VARIATION + 1)

- MOVEMENT_VARIATION;

yAutoMove = r.nextInt(2 * MOVEMENT_VARIATION + 1)
- MOVEMENT_VARIATION;

/* Calculate the size of the object. */

size = r.nextInt(MAX_SIZE - MIN_SIZE) + MIN_SIZE;

}

/**

 * Does this shape contain p?

 *

 * @param p

 * the point to test for containership

 * @return true if this shape contains p, and false otherwise

 */

public abstract boolean contains(Point p);

/**

 * Move this object by a given amount. Used only when dragging the shape.

 *

 * @param dx

 * the x amount to move the shape

 * @param dy

 * the y amount to move the shape

 */

public void move(int dx, int dy)
{

currentX += dx;

currentY += dy;

}

/**

 * Move this shape by the random amount determined when the shape was

 * created. Used during animation.

 *

 */

public void move()
{

currentX += xAutoMove;

currentY += yAutoMove;

}

/**

 * Draw this shape in the graphics context

 *

 * @param g2

 * the graphics context

 */

public abstract void draw(Graphics2D g2);

}

