
CS 390
Chapter 3 Homework Solutions

3.1 Using the program shown in ...

PARENT: value = 5

3.2 Including the initial parent process, ...

8

3.4 Some computer systems provide multiple ...

When a context switch occurs, we must load the saved context of the
kernel (if we are switching from user to kernel mode) or the next
scheduled process (if we are switching from kernel mode to user mode)
into the CPU registers.

If the new context is already loaded into one of the register sets, we
simply adjust the “window pointer” (a CPU register available only to
the kernel) to point to the correct register set.

If the new context is in memory (in the process’s PCB), but there is a
free register set, the kernel loads the new process’s context into a register
set, and adjusts the window pointer to point to the new context.

If the new context is in memory, and all the register sets are in use, the
kernel must choose a process and “evict” that process’s context from the
register set by writing it to the evicted process’s PCB. Once the write is
complete, the kernel loads the new context into the newly available
register set and adjusts the window pointer.

3.5 When a process creates a ... Remember that a fork() creates a
copy of the process, meaning that the process’s entire address space,
along with its PCB, is copied.

a. Not shared.

b. Not shared.

c. Shared. To understand why, realize that shared memory segments
are outside of the process’s address space, and that the processs
accesses them through pointers. The pointers themselves are in the
processes address space.

Additional Exercises: Answers to the additional exercises have been moved
to the next page.

A Describe the actions taken by the kernel when a context switch occurs.

B List two different specific events that can cause a context switch.

1



A Solution Assume that the context switch is caused by the process making
a system call. (Device interrupts are handled similarly.)

1. The mode bit is set to kernel. (This happens in hardware, and so
is not a precisely a kernel action.)

2. The context of the currently executing process is saved in its PCB.

3. The context of the kernel is loaded.

4. The timer chip is disabled.

5. The kernel checks to see what type of interrupt was signalled. In
this case, it was a trap from a user process, so it executes the
“syscall service” routine.

6. In the syscall service routine, the kernel checks the legality of the
parameters passed with the syscall. For example, if the kernel is
passed any pointers, the pointers should point to memory in the
process’s address space. If some naughty process tried to pass a bad
pointer to the kernel, the kernel will terminate the process.

7. The kernel performs the syscall or (for IO) starts the data transfer
to/from the appropriate device.

8. The kernel moves the process to the wait queue (if the process
needs to wait on a device), the ready queue (if the process can
execute immediately), or the terminating queue (if the process tried
to perform an illegal action or called exit().

9. The kernel runs the short-term scheduler to select another process
Pj to execute.

10. The timer chip is re-enabled.

11. The kernel’s context is saved.

12. The context of Pj is loaded.

13. The kernel sets the mode bit to user mode.

14. The kernel loads the next instruction of Pj into the CPU’s
instruction pointer.

B solution Here are four.

1. On a multitasking system, expiration of a process’s time-slice
(indicated by an interrupt from the timer) causes a context switch
to the kernel.

2. A request to perform a system call causes a context switch to the
kernel.

3. The arrival of an interrupt from an external device causes a context
switch to the kernel. Examples: A disk sends an interrupt when it
has completed a previously requested DMA operation. A network
card sends an interrupt when a packet arrives. The keyboard sends
an interrupt when the user presses a key.

2



4. When the kernel finishes processing a system call or servicing an
interrupt, it performs a context switch from the kernel back to a
user process.

3


