CS 390
Chapter 2 Homework Solutions

2.1 What is the purpose of

System calls are used by user-level programs to request a service from
the operating system.

2.2 What is the purpose of ...

The purpose of a command interpreter is to provide a simple
environment in which users may perform common computing tasks.
The command interpreter should be thought of as a software layer
that sits between the user and the other systems programs. The
command interpreter does its job by reading commands from the user
(or from a file, in the case of batch systems) and then performing the
commands. It performs the commands by directly making system
calls itself, or by executing other programs to perform the requested
task.

Note that in most operating systems, the command interpreter is
itself just a regular user-level program, and not part of the kernel.
(See, however, additional exercise B below) This modular design
allows the command interpreter and the kernel to be updated and
extended independently of one another.

2.4 What is the purpose of ...

System programs are provided by the operating system vendor to
perform common tasks (such as backing up files, removing or
renaming files, creating directories, formatting disks, setting the
system date and time, etc.). These are tasks that are complex and
specialized and that do not belong in the kernel, but without which
the computer system would be useless to most users. OS vendors
include them along with the kernel so that users don’t have to write
these programs themselves or purchase software to perform these
tasks.

2.6 List five services provided by ...

Here are six. You may be able to think of others.



1. User interface - Allows the user interact with the computer
without having to have knowledge of how to program the
machine, or how to interact directly with the kernel.

2. Program execution - Hides the details of process layout, memory
allocation, etc. from the user.

3. 1/O operations - Prevents accidental damage to data structures
on secondary storage devices. Hides the low-level details of 1/O
device operation from the programmer. Presents a consistent
interface to devices which masks the individual differences
between devices.

4. File-system manipulation - Presents the file system using a
simple model (for example, the tree-structured directory model
of Unix) while hiding the complexity of the actual storage
structure.

5. Communications - As with 1/O operations, hides the low-level
details of communication from the programmer and provides a
consistent interface over which to communicate.

6. Error detection - Provides for an automated way to deal with
errors, and hides low-level errors from the user.

“Impossible” is a bit strong here, since theoretically, user-level
programs could provide all of these services, provided the program
could access the hardware directly. In fact, in early computers
without sophisticated operating systems, user-level programs were
required to do their own I/O operations, file system manipulation,
and error detection. As you might imagine, mistakes were common,
and it was easy to crash or even destroy an entire system, simply by
issuing a bad command or executing a buggy program.

Modern OS’s form a protective software layer around the hardware,
so any user-level program running on the system must do so indirectly
through the kernel if it wants to perform potentially hazardous
operations.

The only exception here, perhaps, is the user interface. A program
could, if it wanted to, provide its own user interface. In fact in the
Unix family of operating systems (like Linux, Solaris and MacOS),



the GUI that the user sees is just another user process that is started
when the user logs in.

2.7 Why do some systems store ...

Some systems may not have an actual hard disk. Others may only
have a small amount of secondary storage. In both of these cases, the
OS must be stored in firmware.

Disks are omitted if the system is small, inexpensive, or operates in
situations where a disk failure would be catastrophic. Examples
include calculators (which would be too inexpensive if equipped with
a disk), smart watches (which are too small for a mechanical disk but
may have a small amount of solid state secondary storage), portable
music players (which are built as inexpensively as possible so may
have minimal disk space), and embedded medical devices, like
pacemakers (where the failure of a mechanical disk might cause the
device to halt.)

2.8 How could a system be ...

Normally, the bootstrap program loads the operating system at boot
time. One design in use is to make the bootstrap program load a
separate program other than an OS kernel at boot time. This
separate program is called a boot manager. The boot manager knows
the names and locations of the different OSes installed on the
computer, and can load them into memory and execute them as
required. The boot manager is configurable, either at boot time or by
a separate user-level program that can be run before a reboot. Linux
uses a boot manager known as GrUB (Grand Unified Bootloader), so
Linux users can boot into either Linux or Windows if they choose.

The bootstrap program itself resides in hardware and thus cannot be
changed. Because the bootstrap program is fixed, it always loads a
program from a fixed location in secondary storage. Either the OS (in
the case of a machine that has as single OS installed) or the boot
manager (in case of a machine that offers a choice of OSes) resides at
this fixed location.

Additional Exercises



A List at least five major activities of an 0S with regard to
file management.

Here are nine:

Create files

Delete files

Open a file

Close a file

Read from a file

Write to a file

Set file attributes (such as owner, permission, creation time, etc.)

Read file attributes

L X N Ot W

Map the contents of a file on to one or more physical locations
on a secondary storage device

In addition, if the operating system supports the concept of
directories, we need to be able to perform each of these actions on
directories as well.

B Would it be possible for the user to develop a new command
interpreter using the system-call interface provided by
the operating system?

Yes, it is possible to develop a new command interpreter using the
system-call interface on those OS’s where the interpreter is not tightly

integrated into the system (i.e., most operating systems other than
Windows.)

The Unix family of operating systems provides multiple command-line
interpreters (sh, bash, csh, etc.) The ’sh’ in each of these programs
stands for and is pronounced as "shell”, because the command-line
interpreter is thought to serve as a protective shell around the system
programs. Linux also provides multiple GUI command interpreters
(Gnome, KDE, Xfc, etc.) The user is free to switch among the
multiple command-line and GUI command interpreters.

One of the best ways to learn to program in a Unix environment is to
write your own command line interpreter.

4



Bonus question: The command interpreter for the Windows family of
operating systems is called Windows Explorer. (It is sometimes
referred to as File Explorer or just Explorer.) In the United States vs.
Microsoft anti-trust trial of 1998, Microsoft claimed that it was not
possible to remove Explorer from the Windows 95™ operating
system without completely breaking Windows.

Assuming that this is true!, why do you think Microsoft made the
Windows’ user interface so tightly integrated with the operating
system kernel?

C What are the two models of interprocess communication (IPC)?
What are the strengths and weaknesses of each model?

The two models of interprocess communication (IPC) are shared
memory and message passing.

[PC with shared memory is fast, since different processes (or a
process and the kernel) can communicate simply by reading or writing
the shared memory. However, some method of synchronization is
required in order to avoid situations where two or more processes
attempt to access their shared memory at the same time. In addition,
distributed systems don’t have any common primary memory, and
thus can not use this method.

IPC with message passing requires less synchronization than shared
memory, since there is no overlap between the physical memory of the
processes. There is, however, more overhead required to setup
message passing between processes, and to send and receive messages.

D What is the main advantage of the micro-kernel approach to
system design? How do user programs and system services
interact in a microkernel architecture? What are the
disadvantages of using the microkernel approach?

Because they are implemented using a small kernel and a collection of
separate privileged system processes, microkernel OS’s are easier to
design and maintain then other types of kernels.

Rather than making system calls directly to the microkernel, user
level programs make most service requests to system processes using

t’s not true.



IPC. These system processes fulfill the service requests by making
system calls to the microkernel or requests to other system processes.

The main disadvantage of microkernels is that more communication
overhead may be required to perform system services, resulting in an
OS that may be slower than an equivalent layered or modular system.
The OS community is still debating exactly how much slower a
microkernel must be, and whether the design benefits of microkernels
outweigh the costs associated with the slow-down.



