
CS 390
Chapter 6 Homework Solutions

6.1 In Section 6.4, we mentioned ...

Modern computer systems contain a special clock chip, powered by a
battery, that keeps track of the date and time. Many system calls
need to use the date and time. For example, most file systems track
the time a file was last accessed, so every file read from or write to a
file requires the kernel to read the date and time.

Because accessing any hardware is an expensive operation requiring
DMA setup and teardown, and at the minimum the processing of an
interrupt, the kernel only reads the date and time from the clock chip
when the system boots. After that, the time is stored in a variable in
kernel memory, which the kernel updates periodically. It does this by
updating the value each time a timer interrupt occurs. If interrupts
were to be disabled for a long time, we might miss some timer
interrupts, causing the kernel’s internal clock variable to run slowly.
These effects can be minimized by disabling interrupts for only a
short period of time.

The timer chip is also used for scheduling. At every timer interrupt,
most scheduling algorithms will determine if the executing process’s
time quantum is expired. If the kernel ignores timer interrupts, the
scheduling algorithm will not have accurate data with which to make
decisions.

6.2 What is the meaning of ...

A “wait” occurs when a process wants to delay its execution until
some condition becomes true. One way to accomplish this is by a
“busy wait”, where a process repeatedly checks the condition in a
tight loop. The busy wait ends when the value of the condition
changes. Here is an example:

/* A busy wait. */

while (the_condition_i_care_about_is_false) {

;

}

The only other kind of wait in an operating system is an “idle wait”.
In this type of wait, a process is placed on a queue and does not use
CPU cycles until some event occurs. It is the responsibility of the OS
to remove the process from the queue when the event occurs.
Processes in idle wait are found either on the ready queue or on the
wait queue.

Instead of busy waiting, a process can request that it be placed in idle
wait. It is then up to either another process or the kernel to monitor
the condition, and arrange for the process to be removed from the
queue when the condition changes.

Adding a process to a wait queue, and then waking it and moving it
back to the ready queue will require some non-zero amount of CPU
time. On a multiprocessor system where the wait is expected to be
short, it may actually be more efficient for a process to busy wait
than to idle wait. (See next question.)

6.3 Explain why spinlocks are not ...

Spinlocks are never appropriate for single-processor systems for two
reasons:

1. A spinlock uses CPU cycles even though it performs no useful
work.

2. The condition that will break the process out of the spinlock can
be obtained only be executing another process. Since we only
have one CPU, the condition cannot change while the spinlock is
being executed.

On a multiprocessor system, it is sometimes more efficient to allow a
process to busy-wait rather than to place the process on a wait queue.

Placing the process on the wait queue requires a context switch.
Another context switch is required when the process is removed from
the queue and placed on the ready queue. If the critical section that a
process is waiting on is short, it may become available quickly. In this
case, it may be faster and use fewer CPU cycles to simply execute a
spinlock rather than incur the overhead of two context switches. Even
if one process is using CPU cycles by spinning, the condition can still
change.

It is up to the kernel designers to determine which critical sections in
the kernel code are long enough to require wait queues, and which can
be better protected by spinlocks.

Additional Questions

A The first known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, P0

and P1 share a Boolean array with two elements, and an int variable.
The structure of process Pi, i == 0 or 1 is shown below. (The other
process is Pj, j == 1 or 0.)

boolean flag[2] = {false, false};

int turn;

while (true) {

/* entry section */

flag[i] = true;

while (flag[j]) {

if (turn == j) {

flag[i] = false;

while (turn == j) {

;

}

flag[i] = true;

}

}

/* critical section */

/* exit section */

turn = j;

flag[i] = false;

/* remainder section */

}

B Imagine a system where the kernel implements synchronization
primitives, and then allows processes to use these primitives via
system calls. Explain why implementing these primitives by disabling
interrupts is not appropriate.

C Describe two data structures in which race conditions are possible.

D Consider this code example that a kernel might execute during process
creation and destruction. For example, the first segment of code
might be executed when a process calls fork() to create another
process. The second might be executed when a process calls the
exit() system call.

#define MAX_PROCESSES 255

int n_processes = 0;

/* the implementation of fork() calls this function */

unsigned int allocate_process()

{

if (n_processes == MAX_PROCESSES) {

return -1;

} else {

/* allocate necessary process resources */

unsigned int new_pid = n_processes++;

return new_pid;

}

}

void release_process()

{

/* release process resources */

--n_processes;

}

1. Identify the race condition(s) in this code.

2. Assume you have a mutex lock name mutex with the operations
acquire() and release(). Indicate where the locking needs to
be placed to prevent the race condition(s) you identified.

3. Assume the programming language you are implementing the
kernel in has an atomic data type that guarantees all statements
that manipulate a variable act atomically. Could we replace int

n processes = 0; with atomic t n processes = 0; to prevent
the race condition(s)?

Answers to Additional Questions

A It’s easier to understand the algorithm if you know the purpose of the
shared variables. The condition Flag[i] == TRUE means Pi is trying
to enter or has already entered its critical section. If Turn == i in
the code, it means that it is Pi’s turn to enter the critical section,
should both processes try to enter concurrently. Let us consider two
processes P0 and P1.

Mutual Exclusion Assume that P0 is in the critical section. We
must show that P1 cannot enter the critical section.

If P0 is in its critical section, then flag[0] == TRUE, so P1 will
loop on the outer loop while (flag[0]) ... until P0 changes
flag[0]) when it leaves the critical section.

Progress We need to show that a process can not be blocked forever
when it attempts to enter the critical section. Consider process
P0. Suppose P0 wants to enter its critical section. If P1 is in its
remainder section, a hand trace of the code shows that P0 can
enter its critical section immediately.

Now suppose that P0 is somehow blocked in the entry section. It
can be blocked at two places: the inner loop of the entry
condition (while (turn == 1) ...) or the outer loop (while
(flag[1]) ...).

Suppose that it is blocked at the outer loop. If this is true, we
must have flag[1] == TRUE. If turn == 1, then P0 will reset
its flag to FALSE, allowing P1 into its critical section. When P1

exits, it will set turn to 0 and flag[1] to FALSE, allowing P0 to
enter its critical section.

Bounded Waiting We will show the bounded waiting requirement
by showing that, when both processes always want to enter their
critical sections, the processes alternate. First, note that the

variable turn is only ever assigned to in the exit section: P0 sets
turn to 1, and P1 sets turn to 0.

Suppose both processes begin to execute their entry sections,
and turn == 1. Both flag variables will be true, and both
processes will execute the body of the outer while loop. P0 will
find turn == 1, clear its flag and busy wait on while (turn

== 1). P1, on the other hand, will see that turn == 1, and
flag[0] == false, and will then enter its critical section. (This
follows from our Progress argument above.)

After P1 exits its critical section, it will set turn = 0. Any
attempt by P1 to “sneak back around” and enter its critical
section immediately will be blocked by the if (turn == 0) ...

statement. Thus, P0 will eventually find flag[1] == FALSE and
enter its critical section.

B Suppose such a synchronization primitive was available to a user-land
program. A program calling a sync primitive would then be executing
with interrupts turned off. If the CPU is ignoring DMA interrupts,
data from IO devices can be lost. (Think about an arriving network
packet stored in a buffer on a network card.) Even worse, ignoring
timer interrupts means that the process would never enter the kernel
involuntarily: the CPU-scheduler would never run, essentially allowing
the process to monopolize the CPU until it turned interrupts back on.

C Any kernel data structure that is accessed by multiple processes and
that cannot be accessed atomically is vulnerable to race conditions. It
is easier to understand how a race condition could occur if you
imagine multiple processes executing in kernel mode on a
multiprocessor system.

Here are four data structures that could exist in a kernel and are
vulnerable to races.

1. When a new process is created, the kernel reads the next process
number from a kernel variable, and then increments the variable.
What would happen if two processes read or wrote the variable
at the same time?

2. When the timer goes off, the executing process’s PCB is added
to the ready queue. What would happen if two processes

attempted to manipulate the ready queue at the same time?

3. When a process makes an IO request, the process’s PCB is
added to the appropriate wait queue. What would happen if two
processes attempted to manipulate the wait queue at the same
time?

4. When DMA occurs, the kernel must allocate a chunk of free
memory for the device to use during IO. Suppose that chunks of
free memory are kept in a list. What would happen if two
processes attempted to manipulate the free memory list at the
same time?

D A kernel might contain code like this in order to prevent a user from
creating too many processes (for example, to prevent a fork() bomb.)

1. N processes is a shared variable that is manipulated by both
segments of code. Since different processes may execute this code
concurrently, it is subject to race conditions if not accessed in a
critical section. In particular, imagine what might happen if
multiple processes were to execute the if statement in
allocate processes() simultaneously.

2. A process should lock the mutex lock before it executes any
segment of code where it needs exclusive access to variables. It
should unlock the mutex at the end of that segment.

In the example, allocate process() should take the mutex lock
before the if statement starts. Because there are multiple ways
to leave the if statement, it should unlock the mutex at each
termination: that is, just prior to the two return statements.

Release process() should take the lock before decrementing
number of processes and release it afterwards.

3. This idea sounds promising, but unfortunately, like many ideas
that sound good when you first hear them (Twitter, FaceBook,
the Windows phone, going out for $1 pints on a Sunday night,
etc.) it doesn’t work out in practice.

The reason the race can occur is because n processes is tested
in allocate processes(), and then, depending on the value of
that test, updated later. What we really need is to make the test

and the update of the variable execute with a guarantee that no
other process can intervene between those two actions.

This type of guarantee, where two separate actions are combined
into one indivisible action, is referred to as an “atomic
transaction”. Such actions are very important in databases,
fault-tolerant computing and distributed algorithms. All atomic
transactions are constructed using the concept of a mutex lock
as a basic building block.

